Failure Modes and Inspection Needs of Coke Drums

Mahmod Samman, Ph.D., P.E.
President
Houston Engineering Solutions, LLC
(832)512-0109
mms@hes.us.com
Overview

• Introduction
• Overview of common failures
• Skirt failures
• Shell failures
• Inspection and monitoring needs
• The big picture
• Summary
Introduction

• Profitable unit
• Failure-prone
 – Batch process
 – Excessive loads
 • Thermal
 • Mechanical
 – Randomness
 • Flow channels
 • Feed type
 – Human factors
Common Failure Modes

• **Skirt failures**
 – Cracks
 – Buckling
 – Bolt failures

• **Shell failures**
 – Bulges
 – Cracks
 – Tilting (banana)

• **Piping Failures**
 – Blow-down line
 – Nozzles
 – Pipe supports

• **Vibration-induced failures**

• **Structural concrete failures**
Skirt failures
Skirt Failures

• **Cracking in attachment weld**
 – Common in conventional welded skirts
 – Potential consequences
 – Drum replacement

• **Buckling**
 – Uncommon
 – Potential consequences

• **Anchor bolt failures**
 – Drum movement and “jumping”
 – Typically recurring
 – Becoming more common
 – Overload, fatigue, corrosion
 – Thermal gradients, vibrations, falling boulders, corrosion
Conventional Skirts

Variations:
• Slots
• Weld details
• Scallop
• Forged ring

Damage:
• Joint cracks
• Keyhole cracks
• Bulges
• Bolt failures

In-line

Lap-joint
<table>
<thead>
<tr>
<th>Description</th>
<th>Location</th>
<th>Percent Cracking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cracking at Weld</td>
<td>A, B, C</td>
<td>56%</td>
</tr>
<tr>
<td>Cracking into Shell</td>
<td>A</td>
<td>43%</td>
</tr>
<tr>
<td>Cracking from Skirt OD</td>
<td>B</td>
<td>63%</td>
</tr>
<tr>
<td>Cracking From Skirt ID</td>
<td>C</td>
<td>26%</td>
</tr>
<tr>
<td>Cracking at Slots / Keyholes</td>
<td>D</td>
<td>76%</td>
</tr>
<tr>
<td>Total Cracking in Skirts</td>
<td>A, B, C, D</td>
<td>78%</td>
</tr>
</tbody>
</table>
Skirt Stresses

Temperature

Skirt Stress
Temperature Animation Close-Up
Axial Stress Animation
Skirt Attachment Experience

• API 1996 Survey:
 – 23% replaced skirt => 45% cracked again.
 – 54% ground-and-rewelded => 50% cracked again.

• Typical design life of conventional welded skirts under today’s transients:
 – 500 – 1500 cycles
 – 2 - 6 years

• Observed cracks in recent conventional welded skirts is 3 to 5 years.
Recap on Skirt Failures

• Skirt failures are common in conventional welded skirts especially attachment weld cracks.

• Drum design, fabrication, and operation influence skirt life.

• Neither skirt repairs nor replacement are typically effective in ending attachment weld cracking.
Shell failures and inspection needs
Shell Failures

• **Bulging and cracking**
 – Common
 – Consequences
 – Drum replacement

• **Tilting**
 – Becoming more common
 – Uneven drum heating or cooling
 – Single-sided inlets
 – Consequences (Functional vs. structural)
Shell Bulging & Cracking

• Classic
• Constrained balloon

Weil and Rapasky (1958)

Courtesy CB&I
Cycles to First Bulge / Crack

Cycles to First Bulge

(Cycles to First Through Wall Crack for Reference)

<table>
<thead>
<tr>
<th>Material</th>
<th>Average Number of Cycles to First Bulge</th>
<th>Minimum Number of Cycles to First Bulge</th>
<th>Maximum Number of Cycles w/o Bulge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Steel</td>
<td>3023</td>
<td>183</td>
<td>7057</td>
</tr>
<tr>
<td>Carbon ½ Moly</td>
<td>2504</td>
<td>346</td>
<td>(9386)*</td>
</tr>
<tr>
<td>Chrome Moly</td>
<td>2978</td>
<td>1286</td>
<td>(4745)*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>Average First Through Wall Crack</th>
<th>Minimum Cycles to First Through Wall</th>
<th>Maximum Cycles without Crack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Steel</td>
<td>5968</td>
<td>3650</td>
<td>5749</td>
</tr>
<tr>
<td>Carbon ½ Moly</td>
<td>3968</td>
<td>1286</td>
<td>(9386)*</td>
</tr>
<tr>
<td>Chrome Moly</td>
<td>3570</td>
<td>2025</td>
<td>(5994)*</td>
</tr>
</tbody>
</table>

* - note, still operating without a bulge.
Bulge Dimensions

API 1996 Survey

<table>
<thead>
<tr>
<th>Question</th>
<th>Maximum Answer Range</th>
<th>Average Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Vertical Length</td>
<td>3” to 620”</td>
<td>65”</td>
</tr>
<tr>
<td>Average Vertical Length</td>
<td>2” to 50”</td>
<td>23”</td>
</tr>
<tr>
<td>Maximum Circumferential Length</td>
<td>5.5” to 1,074”</td>
<td>547”</td>
</tr>
<tr>
<td>Average Circumferential Length</td>
<td>4” to 1,074”</td>
<td>408”</td>
</tr>
<tr>
<td>Maximum Radial Bulge</td>
<td>.31” to 6”</td>
<td>3”</td>
</tr>
<tr>
<td>Average Radial Bulge</td>
<td>¼” to 6”</td>
<td>2.1”</td>
</tr>
</tbody>
</table>
Locations of Bulges and Cracks

Histogram of Bulge and Crack Distribution

API 1996 Survey
Possible Causes of Bulging

• Radial growth:
 – Stress vs. strength
 – Type of feed
• Non-uniform:
 – Stiffness mismatch
 – Imperfections
 – Random channeling
 – Local heat treatment
• Progressive
• Patterns
 – Circumferential welds
 – Mid-plate
 – Mid-drum
Relatively Similar Bulging Pattern

Identical design and operation
Dissimilar Bulging Pattern

Identical design and operation
Consequences of Bulging

• Primary damage
• Secondary effects
• Can lead to leaks and fires
Shell Cracks

• Bulging-induced cracks
• Weld cracks
 – Defects
 – Weld-base boundary
 – Clad boundaries
• Combination
Bulging-Induced Cracks

INTERIOR

EXTERIOR
Bulging Severity

• Stress analysis
• Geometric analysis
• Strain analysis
Plastic Strain Index (PSI)

- Failure limits from API 579/ASME FFS
- Outcome:
 - Bulging-induced cracks:
 - Likelihood
 - Ranking
 - Locations
 - Frequency of laser scanning
- Correlates well with history of failures

<table>
<thead>
<tr>
<th>PSI magnitude</th>
<th>Severity Grade</th>
<th>Likelihood of Bulging-Induced Cracks</th>
<th>Recommended Frequency of Laser Scanning</th>
</tr>
</thead>
<tbody>
<tr>
<td>80% to 100%</td>
<td>Failure</td>
<td>Likely</td>
<td>6 months to 1 year</td>
</tr>
<tr>
<td>60% to 80%</td>
<td>Danger</td>
<td>Probable</td>
<td>1 year</td>
</tr>
<tr>
<td>40% to 60%</td>
<td>Concern</td>
<td>Possible</td>
<td>1 to 2 years</td>
</tr>
<tr>
<td>0 to 40%</td>
<td>Design</td>
<td>Unlikely</td>
<td>2 to 3 years</td>
</tr>
</tbody>
</table>
Example
Identical design and operation

- Ovality
- Excessive cracking
- Localized bulge cracking
PSI Severity Maps

High Severity at cracking sites
PSI Trending
Recap on Shell Failures

• Shell failures are common.
• Several factors contribute to creating bulges.
• Bulging magnitude and severity are different.
• PSI analysis assesses the severity of bulges and provides directions for prioritizing inspection needs and optimizing resource allocations.
• Premature drum replacement can be avoided and bulges can be effectively managed with proper engineering, inspections, and repairs.
Inspection and monitoring needs
Overview

• Laser scanning
• Conventional nondestructive testing methods
• Acoustic emission testing / monitoring
• Temperature monitoring
• Strain monitoring
Laser Scanning

• Available laser scanning techniques

• Advantages
 – Bulge sizing and characterization
 – Some provide video surveying / photos

• Disadvantages
 – Significant differences in techniques / accuracy
 – Incomplete without engineering assessment
Conventional NDT Methods

• Advantages
 – Sizing of defects
 – Robust methods with physical record

• Disadvantages
 – Scaffolding and removal of insulation
 – Some require shutdown
 – Time-consuming / costly for entire drums
 – Too many indications
Acoustic Emission Testing

• Advantages
 – Detect active cracks only
 – Through-insulation
 – No shutdown

• Disadvantages
 – No size information
 – Human factors
Temperature Monitoring

• Advantages
 – Robust
 – Inexpensive
 – Commonly used and specified for new drums
 – Easily incorporated in control process

• Disadvantages
 – Incomplete without engineering analysis
 – Data management
Strain Monitoring

• Advantages
 – Measure of damage
 – Research / verification

• Disadvantages
 – Cost
 – Scaffolding / removal of insulation / wiring
 – Data management
 – Data scatter
Inspection/Monitoring Recap

• Most common inspection tools:
 – Visual
 – Laser scans
 – Liquid Penetrant
 – Ultrasonic testing techniques

• Valuable additional inspection/monitoring tools:
 – AET
 – Temperature monitoring
The Big Picture

• An effective mechanical integrity program:
 – Inspection
 – Assessment
 – operations
 – Repair
 – Replacement

 Integrally related
Summary

• Skirt and shell failure modes that are common in coke drums can lead to leaks and fires.
• Drum design, fabrication, and operation influence coke drum life.
• Premature drum replacement can be avoided and common failures can be effectively managed with proper analysis, assessment (PSI), inspections, and repairs.
• Most common inspection tools are visual testing, laser scanning, Liquid Penetrant, and Ultrasonic Testing techniques. Additional recommended tools include acoustic emission and temperature monitoring.
• Inspection needs are effectively fulfilled when inspections are performed as part of an inter-dependent mechanical integrity program.
QUESTIONS?

Mahmod Samman, Ph.D., P.E.
President
Houston Engineering Solutions, LLC
(832)512-0109
mms@hes.us.com